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Q.H. Ngô, N. Gargava, S. Goodenough.

CIP seminar,
Friday conversations:

For this seminar, please have a look at Slide CCRT[n] & ff.
1 / 29



Goal of this series of talks

The goal of these talks is threefold

1 Category theory aimed at “free formulas” and their combinatorics
2 How to construct free objects

1 w.r.t. a functor with - at least - two combinatorial applications:

1 the two routes to reach the free algebra
2 alphabets interpolating between commutative and non commutative

worlds

2 without functor: sums, tensor and free products
3 w.r.t. a diagram: limits

3 Representation theory: Categories of modules, semi-simplicity,
isomorphism classes i.e. the framework of Kronecker coefficients.

4 MRS factorisation: A local system of coordinates for Hausdorff
groups.
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CCRT[16] Higher order BTT (part 3).
One-parameter groups and identities among series.

Disclaimer. – The contents of these notes are by no means intended to
be a complete theory. Rather, they outline the start of a program of work
which has still not been carried out.

1 Some first limiting processes

2 About topologies on series

3 The univariate case

4 The Hausdorff group

5 General and x ϕ

6 The one-parameter group trick

7 Some concluding remarks
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Introduction

1 Today, we will use the same analysis/synthesis method as in CCRT[16] (part
one) and use the information gathered to consider solutions of the BTT as
paths drawn on closed subgroups on the Magnus group.

2 The mental process for the making of the BTT [9] on various subgroups will
be the following

Integrating the obervable→ Differentiation→︸ ︷︷ ︸
Analysis

Technical condition→ NSC→ Proof & Boundaries︸ ︷︷ ︸
Synthesis/Integration

3 This method is not new, it is that of Archimedes (-287, -212) [1], Liu Hui
(220-280) [18] and Cavalieri (1598-1647) [6]. Archimedes work was
originally thought to be lost, but in 1906 was rediscovered in the celebrated
Archimedes Palimpsest.
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Limiting processes and topologies/1

1 We have seen last time some limiting processes (like Riemann integral
and Lebesgues y -axis sampling) which are not reducible to sequences,
(we will return to this point later on).

2 In order to understand deeply and master our calculations with
group-like series (of all sorts not only for the co-shuffle coproduct),
we have to deal with closed subgroups of the Magnus group.

3 Let us first examine and analyse some simple limits of sequences of
series.

4 We first address the following identity

lim
n→+∞

(1 +
z

n
)n = ez (1)

Which can be considered within the formal realm (i.e. LHS, for each
n, within C〈z〉 = C[z ] and RHS within C〈〈z〉〉 = C[[z ]]) or in H(C)
with compact convergence.
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x

y

f1(x)
f2(x)
f3(x)

f5(x)

f (x)

︸ ︷︷ ︸
Compact convergence.

Figure: The one-parameter group f (x) = e
x
2 as the limit of fn(x) = (1 + x/(2n))n.
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Limiting processes and topologies/2

5 In fact, a variant of (1)a was used by Montgomery and Zippin to solve
Hilbert’s fifth problem [29].

6 (Informal) definition:b A one-parameter group, is a correspondence G to
some group such that

G (t1 + t2) = G (t1)G (t2)

7 In fact, we are interested in creating a new theory of

1 Paths drawn on groups of series
2 One-parameter groups on infinite-dimensional Lie groups of series and

their combinatorics.
3 We use an application to stuffle identity, introducing a “Holomorphic

functional calculus” [15] in order to get and prove non-trivial identities
within Hausdorff groups.

aIn fact, the construction of one-parameter groups as limits of this kind.
bInformal, means here “at the level of general idea”.
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Every path drawn on the group is a solution of
y ′(t) = m(t)y(t)

Lie Group G

L(G ) (Lie algebra)

y(t)

y(t)

c

y ′(t)

Figure: For one-parameter groups y ′(t)y(t)−1 = c is constant.
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An identity in the stuffle algebra/1

8 We begin by an application on the Hausdorff group of a particular bialgebra.
Here, with Y = {yi}i≥1

B = B = (C〈Y 〉, conc, 1Y ∗︸ ︷︷ ︸
algebra part

,∆ , ε) (2)

and we first establish an identity within the stuffle algebra, taking “stars of
the plane” as arguments.

(
∑
i≥1

αi yi )
∗ (

∑
j≥1

βj yj)
∗ = (

∑
i≥1

αi yi +
∑
j≥1

βj yj +
∑
i,j≥1

αiβj yi+j)
∗ (3)

As the alphabet is infinite, we use here homogeneous series of degree one as∑
i≥1 αi yi . These sums are not necessarily finite (they are, in general, a

series) but can be so. Series like this form the vector space CY (called by

Pr. Schützenberger “the plane of letters”), noted, in our works, Ĉ.Y as it is
the completion of C.Y = C(Y ) for some topology.
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An identity in the stuffle algebra/2: Generalities

9 In fact, identity (3) describes completely the composition of characters (i.e.
the composition within Ξ(B)). In fact B (see its elements in eq. 2) is a
conc-bialgebra and conc-characters are exactly “stars of the plane” i.e., for
generic X , of the form (

∑
x∈X αx x)∗.

10 We recall that ∆ (yn) = yn ⊗ 1 + 1⊗ yn +
∑

p,q≥1
p+q=n

yp ⊗ yq.

11 In fact this comultiplication is a particular case of ∆xϕ
comultiplications

which read, for each letter x ∈ X (see [13]),

∆xϕ(x) = x ⊗ 1 + 1⊗ x +
∑

y ,z∈X
γy ,zx y ⊗ z (4)

where the tensor γy ,zx is locally finite in x .

12 For these conc-bialgebras, we have in general

(
∑
y∈X

αy y)∗x ϕ(
∑
z∈X

βz z)∗ = (
∑
y∈X

αy y +
∑
z∈X

βz z +
∑

x,y ,z∈X
αyβz γ

y ,z
x x)∗
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An identity in the stuffle algebra/3: Generalities

13 One proof of (5) rests on the fact that the algebra is generated by X and,
then, we have just, knowing the form of the LHS-RHS, to test equality on
letters. Let us recall some definitions and properties (k is a commutative
ring)

1 Let B = (B, µ, 1B,∆, ε) be a bialgebra.
2 We call Ξ(B) the set of characters of (B, , µ, 1B) (with values in k)
3 When C is another k-algebra, we will note Ξ(B; C), the set of

characters of B with values in C.a

14 One can show that, if C is commutative, characters compose through
convolution. Indeed, the dual B∨ (now C = k) is an algebra under t∆
(which will be noted ~) and Ξ(B) ⊂ B∨ is closed under ~.

aThis set is none other than the Hom-set of the algebras, i.e. we have truly

Ξ(B; C) = Hom
k−AAU(B, C)

but the point of view is commpletely different.
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Some exercise about these generalities

15 Let k be a commutative ring and B = (B, µ, 1B,∆, ε) be a k-bialgebra. As
∆ : B B ⊗ B, we have t∆ : (B ⊗ B)∨ B∨

16 (Q1) Explain the arrow

can : B∨ ⊗ B∨ (B ⊗ B)∨ (6)

and prove that t∆ ◦ can is a law of k−AAU in B∨ (we will note this law ~).

17 (Q2) i) Let C be a k−CAAU, prove that Ξ(B) is a submonoid of (B∨,~, ε).
ii) Extend these results to Ξ(B; C) (where C is an object of k− CAAU).

18 (Q3) i) For t ∈ C, compute (2ty1 + t2y2)∗ under the form of an exponential.
ii) Recall that “Stars of the plane” are conc-characters and prove that, for
t 6= 0, (y∗1 , (2ty1 + t2y2)∗, y∗3 ) are algebraically independent over
(C〈Y 〉, , 1Y ∗) within (C〈〈Y 〉〉, , 1Y ∗).

iii) More generally, prove that, if Qi ∈ Ĉ.Y are Z-linearly independent, then
(Q∗i )i∈I are algebraically independent.
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Exercise (cont’d)

19 Before proving the (very hard) question (iii) of exercise 18 above let us give
a bit of a categorical motivation.

20 H(Ω) is a C-vector space, in fact a C− CAAU (and hence all derived
substructures: monoid and the like). Then, if one has a correpondence (a
set-theoretical map)

Φset : X H(Ω) (7)

(be it for “inputs” or everything else, arbitrary) one can extend it to C〈X 〉
as we do for αz

z0 , Θ, . . .. One gets at once an extension

ΦC−AAU : C〈X 〉 H(Ω) (8)

21 The question will be addressed next time will be to extend (8) to (certain)
series.

22 On the RHS of (8), we have a space with a topology (apparently, the only
reasonable one, see [16]). On the LHS, there are several topologies.
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An algebraic one-parameter group for stuffles/1

23 (Holomorphic functional calculus [15]) Let S ∈ C+〈〈Y 〉〉 (sometimes
called ”a proper series”) and T =

∑
n≥0 anz

n ∈ C[[z ]], we first
remark that (anS

n)n≥0 is “summable” (see definition below,
equation (9) and use the weight).

Definition

A family of series (Si )i∈I in k〈〈X 〉〉 is said summable if, for all w ∈ X ∗, the
map i 7→ 〈Si |w〉 is finitely supported. In this case the sum of the family is
defined by ∑

i∈I
(Si ) :=

∑
w∈X ∗

∑
i∈I
〈Si |w〉w (9)

24 For T ∈ C[[z ]] and S ∈ C+〈〈Y 〉〉, we note

T (S) :=
∑
n≥0
〈T |zn〉 S n (10)
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An algebraic one-parameter group for stuffles/2

25 For S ∈ C+〈〈Y 〉〉, we have

log (1Y ∗ + S) exp (S)− 1Y ∗ belong to C+〈〈Y 〉〉 and (11)

exp (log (1Y ∗ + S)) = 1Y ∗ + S log (exp (S)) = S(12)

26 (Commutation and polynomial type coefficients) For S ,T ∈ C+〈〈Y 〉〉
and P(z) ∈ C[z ], we have

exp (S + T ) = exp (S) exp (T ) and (13)

exp (P(z).S) ∈ C[z ]〈〈Y 〉〉 ; (14)

d

dz
(exp (P(z).S)) = (P ′(z).S) exp (P(z).S) (15)
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An algebraic one-parameter group for stuffles/3

27 Now, we code “the plane” by Umbral calculus.

28 Let x be an auxiliary letter, The map

πUmbra
Y :

∑
n≥1

αn x
n 7→

∑
n≥1

αn yn (16)

from C+[[x ]] to Ĉ.Y is linear and bijective. We will call πUmbra
x its

inverse.

29 For S ,T ∈ C+[[x ]], one can show that

(πUmbra
Y (S))∗ (πUmbra

Y (T ))∗ = (πUmbra
Y ((1 + S)(1 + T )− 1))∗ (17)

30 Therefore, for z ∈ C and T ∈ C+[[x ]], one sets

G (z) = (πUmbra
Y (ez.T − 1))∗ (18)
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An algebraic one-parameter group for stuffles/4

31 From (17), (15) and (3) one gets, for z1, z2 ∈ C,

G (z1 + z2) = G (z1) G (z2) ; G (0) = 1Y ∗ (19)

(then G can truly be called a “stuffle one parameter group”).

32 We check that
d

dz
(G (z)) = (πUmbra

Y (T )) G (z) (20)

and deduce that
G (z) = e

z.πUmbra
Y (T )

(21)

33 What precedes shows us that, for each P =
∑

i≥1〈P|yi 〉 yi ∈ Ĉ.Y

log (P∗) = πUmbra
Y (log(1 + πUmbra

x (P))) (22)
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An algebraic one-parameter group for stuffles/5

34 In particular, using (22), we show that

(tyk)∗ = exp
(∑

n≥1

(−1)n−1tnynk
n

)
(23)
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Limiting processes and topologies/3

35 Our first examples are taken in C[[z ]] = C〈〈z〉〉.
36 First, we return to S∗ (S is without constant term) and (1 + z

n )n.

37 In the first case, calling ω(S) the minimal length of supp(S) (and still
supposing 〈S |1X∗〉 = 0) we have ω(Sn) ≥ n and then (Sn)n≥0 is summable.

38 In the second one, one has

(1 +
z

n
)n = 1 + z +

(n)(n − 1)

n2
z2 + . . . = 1 + z +

(n − 1)

n
z2 + . . . (24)

the series of differences Tn = (1 + z
n+1 )n+1 − (1 + z

n )n is NOT summable as

Tn = 1
n(n+1)z

2 + . . . and then for all n ∈ N, ω(T n) = 2. What happens in

fact is that, for all N ∈ N,

limn→∞〈(1 + z
n )n|zN〉 =

1

N!
so that, even if the series of differences is not summable, the limit exists.
This term-by-term topology (which is the product topology) is called
“Treves Topology” in [10] (see [30] Ch10 Example III).
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A general theorem

Theorem (GHED,D.Grinberg,HNM [11])

Let (B, ., 1B,∆, ε) be a k-bialgebra. As usual, let ∆ = ∆B and ε = εB be
its comultiplication and its counit.
Let B+ = ker(ε). For each N ≥ 0, let BN+ = B+ · B+ · · · · · B+︸ ︷︷ ︸

N times

, where

B0+ = B. Note that
(
B0+,B1+,B2+, . . .

)
is called the standard decreasing

filtration of B.
For each N ≥ −1, we define a k-submodule B∨N of B∨ by

B∨N = (BN+1
+ )⊥ =

{
f ∈ B∨ | f

(
BN+1
+

)
= 0
}
. (25)

Thus,
(
B∨−1,B∨0 ,B∨1 , . . .

)
is an increasing filtration of B∨∞ :=

⋃
N≥−1 B∨N

with B∨−1 = 0.
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A general theorem cont’d

Theorem (GHED,D.Grinberg,HNM [11])

Then:

(a) We have B∨p ~ B∨q ⊆ B∨p+q for any p, q ≥ −1 (where we set
B∨−2 = 0). Hence, B∨∞ is a subalgebra of the convolution algebra B∨.

(b) Assume that k is an integral domain. Then, the set Ξ(B)× of
invertible characters (i.e., of invertible elements of the monoid Ξ(B))
is left B∨∞-linearly independent.

Application to the stuffle algebra

39 B = (C〈Y 〉, , 1Y ∗ ,∆conc, ε). Then:

40 (B+)n = C≥n〈Y 〉, B∨n = C≤n〈〈Y 〉〉 (prolynomials)

41 We consider a family Qi ∈ Ĉ.Y which is Z-linearly independent and
will prove that then (Q∗i )i∈I are algebraically independent.
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Conclusion

We have explained what are monoids of characters (with a perspective
towards C-valued characters where C is a commutative algebra.

For conc-bialgebras, we have the form of all characters: they are
precisely “Kleene Stars of the Plane” and we can use combinatorics
on words to compute non-trivial identities.

Next time we will see more on topological settings and
correspondences.
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THANK YOU FOR YOUR ATTENTION !

23 / 29



[1] Archimedes method of Mechanical Theorems
https://en.wikipedia.org/wiki/The_Method_of_Mechanical_

Theorems

[2] J. Berstel and C. Reutenauer, Noncommutative Rational Series with
Applications, Cambridge University Press, March 2013 (Online), 2009
(Print).

[3] N. Bourbaki, Theory of sets, Springer-Verlag Berlin Heidelberg 2004

[4] N. Bourbaki.– Algebra ch 1-3, Springer-Verlag Berlin and Heidelberg
GmbH & Co. K; (2nd printing 1989)

[5] N. Bourbaki.– Commutative Algebra, Hermann (1972)

[6] Cavalieri’s principle
https://en.wikipedia.org/wiki/Cavalieri’s_principle
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